Self-Scaled Barriers for Irreducible Symmetric Cones
نویسندگان
چکیده
Self{scaled barrier functions are fundamental objects in the theory of interior{point methods for linear optimization over symmetric cones, of which linear and semideenite programming are special cases. We are classifying all self{scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition theorem for self{scaled barriers this concludes the algebraic clas-siication theory of these functions. After introducing the reader to the concepts relevant to the problem and tracing the history of the subject, we start by deriving our result from rst principles in the important special case of semideenite programming. We then generalise these arguments to irreducible symmetric cones by invoking results from the theory of Euclidean Jordan algebras.
منابع مشابه
Numerical Analysis Reports SELF–SCALED BARRIER FUNCTIONS ON SYMMETRIC CONES AND THEIR CLASSIFICATION
Self–scaled barrier functions on self–scaled cones were introduced through a set of axioms in 1994 by Y. E. Nesterov and M. J. Todd as a tool for the construction of long–step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains of definition, and subsequently their...
متن کاملSELF { SCALED BARRIER FUNCTIONS ONSYMMETRIC CONES AND THEIR CLASSIFICATIONRaphael
Self{scaled barrier functions on self{scaled cones were introduced through a set of axioms in 1994 by Y. E. Nesterov and M. J. Todd as a tool for the construction of long{step interior point algorithms. This paper provides rm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains of deenition, and subsequently their de...
متن کاملNumerical Analysis Reports SELF–SCALED BARRIERS FOR IRREDUCIBLE SYMMETRIC CONES
Self–scaled barrier functions are fundamental objects in the theory of interior–point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self–scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with...
متن کاملSelf-Scaled Barrier Functions: Decomposition and Classi cation
The theory of self-scaled conic programming provides a uniied framework for the theories of linear programming, semideenite programming and convex quadratic programming with convex quadratic constraints. Nesterov and Todd's concept of self-scaled barrier functionals allows the exploitation of algebraic and geometric properties of symmetric cones in certain variants of the barrier method applied...
متن کاملGaussian Measures as Limits on Irreducible Symmetric Spaces and Cones
We prove central limit theorems of Lindeberg-L evy and Lindeberg-Feller type for any K-invariant random variables on all irreducible symmetric spaces and irreducible symmetric cones, completing in this way the numerous partial results known before. In all cases the limit measures turn out to be Gaussian and being such a limit characterizes these measures. On the other hand we show that other cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 12 شماره
صفحات -
تاریخ انتشار 2002